Tag Archives: Azure Function Apps

Creating a Scheduled Azure Function

I’ve previously written about creating Azure functions. I’ve also written about how to react to service bus queues. In this post, I wanted to cover creating a scheduled function. Basically, these allow you to create a scheduled task that executes at a given interval, or at a given time.

Timer Trigger

The first thing to do is create a function with a type of Timer Trigger:

Schedule / CRON format

The next thing is to understand the schedule, or CRON, format. The format is:

{second} {minute} {hour} {day} {month} {day-of-week}

Scheduled Intervals

The example you’ll see when you create this looks like this:

0 */5 * * * *

The notation */[number] means once every number; so */5 would mean once every 5… and then look at the placeholder to work out 5 what; in this case it means once every 5 minutes. So, for example:

*/10 * * * * *

Would be once every 10 seconds.

Scheduled Times

Specifying numbers means the schedule will execute at that time; so:

0 0 0 * * *

Would execute every time the hour, minute and second all hit zero – so once per day at midnight; and:

0 * * * * *

Would execute every time the second hits zero – so once per minute; and:

0 0 * * * 1

Would execute once per hour on a Monday (as the last placeholder is the day of the week).

Time constraints

These can be specified in any column in the format [lower bound]-[upper bound], and they restrict the timer to a range of values; for example:

0 */20 5-10 * * *

Means every 20 minutes between 5 and 10am (as you can see, the different types can be used in conjunction).

Asterisks (*)

You’ll notice above that there are asterisks in every placeholder that a value has not been specified. The askerisk signifies that the schedule will execute at every interval within that placeholder; for example:

* * * * * *

Means every second; and:

0 * * * * *

Means every minute.

Back to the function

Upon starting, the function will detail when the next several executions will take place:

But what if you don’t know what the schedule will be at compile time. As with many of the variables in an Azure Function, you can simply substitute the value for a placeholder:

[FunctionName("MyFunc")]
public static void Run([TimerTrigger("%schedule%")]TimerInfo myTimer, TraceWriter log)
{
    log.Info($"C# Timer trigger function executed at: {DateTime.Now}");
}

This value can then be provided inside the local.settings.json:

{
  "IsEncrypted": false,
  "Values": {
    "AzureWebJobsStorage": "DefaultEndpointsProto . . .",
    "AzureWebJobsDashboard": "DefaultEndpointsProto . . .",
    "schedule": "0 * * * * *"
  }
}

References

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer

http://cronexpressiondescriptor.azurewebsites.net/?expression=1+*+*+*+*+*&locale=en

Using Unity With Azure Functions

Azure Functions are a relatively new kid on the block when it comes to the Microsoft Azure stack. I’ve previously written about them, and their limitations. One such limitation seems to be that they don’t lend themselves very well to using dependency injection. However, it is certainly not impossible to make them do so.

In this particular post, we’ll have a look at how you might use an IoC container (Unity in this case) in order to leverage DI inside an Azure function.

New Azure Functions Project

I’ve covered this before in previous posts, in Visual Studio, you can now create a new Azure Functions project:

That done, you should have a project that looks something like this:

As you can see, the elephant in the room here is there are no functions; let’s correct that:

Be sure to call your function something descriptive… like “Function1”. For the purposes of this post, it doesn’t matter what kind of function you create, but I’m going to create a “Generic Web Hook”.

Install Unity

The next step is to install Unity (at the time of writing):

Install-Package Unity -Version 5.5.6

Static Variables Inside Functions

It’s worth bearing mind that a static variable works the way you would expect, were the function a locally hosted process. That is, if you write a function such as this:

[FunctionName("Function1")]
public static object Run([HttpTrigger(WebHookType = "genericJson")]HttpRequestMessage req, TraceWriter log)
{
    log.Info($"Webhook was triggered!");
    
    System.Threading.Thread.Sleep(10000);
    log.Info($"Index is {test}");
    return req.CreateResponse(HttpStatusCode.OK, new
    {
        greeting = $"Hello {test++}!"
    });
}

And access it from a web browser, or postman, or both as the same time, you’ll get incrementing numbers:

Whilst the values are shared across the instances, you can’t cause a conflict by updating something in one function while reading it in another (I tried pretty hard to cause this to break). What this means, then, is that we can store an IoC container that will maintain state across function calls. Obviously, this is not intended for persisting state, so you should assume your state could be lost at any time (as indeed it can).

Registering the Unity Container

One method of doing this is to use the Lazy object. This pretty much passed me by in .Net 4 (which is, apparently, when it came out). It basically provides a slightly neater way of doing this kind of thing:

private List<string> _myList;
public List<string> MyList
{
    get
    {
        if (_myList == null)
        {
            _myList = new List<string>();
        }
        return _myList;
    }
}

The “lazy” method would be:

public Lazy<List<string>> MyList = new Lazy<List<string>>(() =>
{
    List<string> newList = new List<string>();
    return newList;
});

With that in mind, we can do something like this:

public static class Function1
{
     private static Lazy<IUnityContainer> _container =
         new Lazy<IUnityContainer>(() =>
         {
             IUnityContainer container = InitialiseUnityContainer();
             return container;
         });

InitialiseUnityContainer needs to return a new instance of the container:

public static IUnityContainer InitialiseUnityContainer()
{
    UnityContainer container = new UnityContainer();
    container.RegisterType<IMyClass1, MyClass1>();
    container.RegisterType<IMyClass2, MyClass2>();
    return container;
}

After that, you’ll need to resolve the parent dependency, then you can use standard constructor injection; for example, if MyClass1 orchestrates your functionality; you could use:

_container.Value.Resolve<IMyClass1>().DoStuff();

In Practise

Let’s apply all of that to our Functions App. Here’s two new classes:

public interface IMyClass1
{
    string GetOutput();
}
 
public interface IMyClass2
{
    void AddString(List<string> strings);
}
public class MyClass1 : IMyClass1
{
    private readonly IMyClass2 _myClass2;
 
    public MyClass1(IMyClass2 myClass2)
    {
        _myClass2 = myClass2;
    }
 
    public string GetOutput()
    {
        List<string> teststrings = new List<string>();
 
        for (int i = 0; i <= 10; i++)
        {
            _myClass2.AddString(teststrings);
        }
 
        return string.Join(",", teststrings);
    }
}
public class MyClass2 : IMyClass2
{
    public void AddString(List<string> strings)
    {
        Thread.Sleep(1000);
        strings.Add($"{DateTime.Now}");
    }
}

And the calling code looks like this:

[FunctionName("Function1")]
public static object Run([HttpTrigger(WebHookType = "genericJson")]HttpRequestMessage req, TraceWriter log)
{
    log.Info($"Webhook was triggered!");
 
    string output = _container.Value.Resolve<IMyClass1>().GetOutput();
    return req.CreateResponse(HttpStatusCode.OK, new
    {
        output
    });
}

Running it, we get an output that we might expect:

References

https://github.com/Azure/azure-webjobs-sdk/issues/1206

Function Apps in Azure

With Update 15.3.1 for Visual Studio came the ability to create Function Apps in VS. Functions were previously restricted to writing code in the browser directly on Azure*.

Set-up

The first step is to download and install, or use the Visual Studio Installer to update to the latest version of VS (at the time of writing, this was 15.3.3 – but, as stated above, it’s 15.3.1 has the Function App update).

Once this is done, you need to launch the Visual Studio Installer again

Select the Azure Workload (if you haven’t already):

The Microsoft article, referenced at the bottom of this post, answers the issue of what happens if this doesn’t work on it’s own; it says:

If for some reason the tools don’t get automatically updated from the gallery…

I’ve now done this twice on two separate machines and, on both occasions, the tools have not automatically been updated from the gallery (it also sounds like the author of the article doesn’t really know why this is the case). Assuming that the reader of this article will suffer the same fate, they should update the Azure gallery extension (if you don’t have to do that then please leave a comment – I’m interested to know if it ever works):

Close everything (including the installer) and this appears:

Finally, we see the new app type:

Function Apps

Once you create a new function app, you get an empty project:

To add a new function, you can right click on the solution (as you would for a new class file) and select new function:

New Function

You then, helpfully, get asked what kind of function you would like:

Function Type

Let’s select Generic WebHook:

Generic Web Hook

We now have some template code, so let’s try and run it:

Running it gives this neat little screen that wouldn’t have looked out of place on my BBS in 1995**:

The bottom line gives an address, so we can just type that into a browser:

As you can see, we do get a “WebHook Triggered” message… but things kind of go downhill from there!

There are a couple of reasons for this; the WebHook only deals with a post and, as per the default code, it needs some JSON for the body; let’s use Postman to create a new request:

This looks much better, and the console tells us that we’re firing:

Publish the App

Okay – so the function works locally, which is impressive (debugging on Azure wasn’t the easiest of things). Now we want to push it to the cloud.

This goes away for a while, compiles the app and then deploys it for us:

Your function app should now be in Azure:

Now you’ll need to find it’s URL. As already detailed in this article, you get the function URL from here:

If we switch Postman over to the cloud, we get the same result***:

Footnotes

* Actually, this is probably untrue. It was probably possible to write them in VS and publish them. There were a few add-ons knocking about in the VS gallery that claimed to allow just that.

** It was called The Twilight Zone BBS; although, if I’m being honest, although the ANSI art on it was impressive, it wasn’t my art work.

*** Locally, it wasn’t that fussed about the body format (it could be text), but once it was in the cloud, it insisted on JSON.

References

https://blogs.msdn.microsoft.com/webdev/2017/05/10/azure-function-tools-for-visual-studio-2017/

http://pmichaels.net/2017/07/16/azure-functions/